Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part I: Weakly-singular integral equation

نویسندگان

  • M. Feischl
  • T. Führer
  • M. Karkulik
  • J. M. Melenk
  • D. Praetorius
  • Markus Aurada
  • Michael Feischl
  • Thomas Führer
  • Michael Karkulik
  • Dirk Praetorius
  • Markus Faustmann
  • Jens Markus Melenk
چکیده

We analyze an adaptive boundary element method for Symm’s integral equation in 2D and 3D which incorporates the approximation of the Dirichlet data g into the adaptive scheme. We prove quasi-optimal convergence rates for any H-stable projection used for data approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-optimal convergence rates for adaptive boundary element methods with data approximation, Part II: Hyper-singular integral equation

We analyze an adaptive boundary element method with fixed-order piecewise polynomials for the hyper-singular integral equation of the Laplace-Neumann problem in 2D and 3D which incorporates the approximation of the given Neumann data into the overall adaptive scheme. The adaptivity is driven by some residual-error estimator plus data oscillation terms. We prove convergence even with quasi-optim...

متن کامل

Quasi-optimal Convergence Rate for an Adaptive Boundary Element Method

For the simple layer potential V that is associated with the 3D Laplacian, we consider the weakly singular integral equation V φ = f . This equation is discretized by the lowest order Galerkin boundary element method. We prove convergence of an h-adaptive algorithm that is driven by a weighted residual error estimator. Moreover, we identify the approximation class for which the adaptive algorit...

متن کامل

Adaptive boundary element methods for optimal convergence of point errors

One particular strength of the boundary element method is that it allows for a high-order pointwise approximation of the solution of the related partial differential equation via the representation formula. However, the high-order convergence and hence accuracy usually suffers from singularities of the Cauchy data. We propose two adaptive mesh-refining algorithms and prove their quasi-optimal c...

متن کامل

Residual A-Posteriori Error Estimates in BEM: Convergence of h-Adaptive Algorithms

Galerkin methods for FEM and BEM based on uniform mesh refinement have a guaranteed rate of convergence. Unfortunately, this rate may be suboptimal due to singularities present in the exact solution. In numerical experiments, the optimal rate of convergence is regained when algorithms based on a-posteriori error estimation and adaptive mesh-refinement are used. This observation was proved mathe...

متن کامل

A Compact Scheme for a Partial Integro-Differential Equation with Weakly Singular Kernel

Compact finite difference scheme is applied for a partial integro-differential equation with a weakly singular kernel. The product trapezoidal method is applied for discretization of the integral term. The order of accuracy in space and time is , where . Stability and convergence in  norm are discussed through energy method. Numerical examples are provided to confirm the theoretical prediction ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013